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Abstract 

Magnesium (Mg), being the lightest structural metal, holds immense potential for widespread applications in various fields. The de- 
velopment of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization. With the rapid 
advancement of machine learning (ML) technology in recent years, the “data-driven’’ approach for alloy design has provided new perspec- 
tives and opportunities for enhancing the performance of Mg alloys. This paper introduces a novel regression-based Bayesian optimization 
active learning model (RBOALM) for the development of high-performance Mg-Mn-based wrought alloys. RBOALM employs active learning 
to automatically explore optimal alloy compositions and process parameters within predefined ranges, facilitating the discovery of superior 
alloy combinations. This model further integrates pre-established regression models as surrogate functions in Bayesian optimization, signif- 
icantly enhancing the precision of the design process. Leveraging RBOALM, several new high-performance alloys have been successfully 
designed and prepared. Notably, after mechanical property testing of the designed alloys, the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demon- 
strates exceptional mechanical properties, including an ultimate tensile strength of 406 MPa, a yield strength of 287 MPa, and a 23% fracture 
elongation. Furthermore, the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa, coupled with a remarkable 41% 

fracture elongation. 
© 2024 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. 
This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
Peer review under responsibility of Chongqing University 
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. Introduction 

Magnesium (Mg) and its alloys are one of the light-
st structural metals, with advantages such as low density,
igh specific strength and stiffness, good thermal conductiv-
ty, damping properties, and environmental friendliness [1 , 2] .
hey have enormous potential applications in 3C, automo-

ive, aerospace, biomedical, military, and sports equipment,
nd have become one of the most popular materials [3 , 4] .
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E-mail address: tat@cqu.edu.cn (A. Tang) . 

s  

t  

M  

ttps://doi.org/10.1016/j.jma.2024.01.005 
213-9567/© 2024 Chongqing University. Publishing services provided by Elsevie
rticle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-n
ompared to cast Mg alloys, wrought Mg alloys offer higher
trength, improved ductility, and a broader range of mechan-
cal properties, thereby meeting the diverse application re-
uirements of engineering structural components. The devel-
pment of novel wrought Mg alloys with simple processing
echniques, abundant alloying elements, and low cost is cru-
ial to expand the applications of Mg [5] . 

In recent years, Mg-Mn non-rare earth wrought alloys have
ttracted mounting focus due to their low elemental costs,
imple fabrication processes, and excellent mechanical proper-
ies, making them one of the most promising new commercial

g alloys [6–8] . The main alloying elements in these series
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lloys include Mn, Al, Zn, Sn, and Ca, offering a more cost-
ffective alternative compared to rare earth systems. More-
ver, the inclusion of Mn in alloys enables the production of
ltrafine grain structures through simple extrusion techniques,
esulting in improved mechanical properties, particularly in
erms of overall performance [9–12] . Despite the substantial
evelopment potential and value inherent in non-rare-earth
rought alloys based on Mg-Mn system, there remain hur-
les in the formulation and advancement of these innovative
lloys. This is primarily due to the need for additional al-
oying elements to synergistically interact within such alloy
ystems. The more alloying elements involved, the greater the
esearch difficulty and cost. Furthermore, apart from consid-
ring the composition, deformation processing must also be
aken into account. Only when the composition and process-
ng are suitable can superior ultrafine-grained Mg alloys be
btained [11] . This undoubtedly poses difficulties when using
raditional experimental approaches for research and devel-
pment. At present, the research and development of new
ulti-element Mg-Mn series wrought alloys still rely on a

rial-and-error method, which not only costly, time-consuming
nd labor-intensive, but also has unpredictable results, which
akes it cannot meet the growing demands of alloy design.
herefore, it is crucial to explore an accurate and efficient
eans of alloy design to facilitate the design and development

f new Mg-Mn-based non-rare earth wrought Mg, which is
ssential for expanding the applications of Mg alloys. 

Over the past decade, machine learning (ML) technology
as rapidly advanced and achieved numerous successful appli-
ations in materials research, demonstrating tremendous po-
ential [13–15] . Integrating machine learning techniques into
he design and development of Mg-Mn-based non-rare earth
rought alloys, leveraging their powerful data processing ca-
abilities to address the multi-element and multi-parameter al-
oy design challenges, and achieving end-to-end design of new
igh-performance and low-cost Mg alloys, may offer an ef-
ective approach to solving the development of Mg-Mn alloy
ystems and represents a meaningful exploration for further
xpanding the commercial applications of magnesium alloys.
his also makes it possible to transform material design from

he traditional "trial and error" approach to a “data-driven’’
pproach [16 , 17] . 

Currently, there has been an increasing amount of research
ocused on utilizing ML for developing innovative materi-
ls [18–20] . Among them, Bayesian optimization (BO) has
ained significant popularity due to its simplicity, efficiency,
ccuracy, and alignment with practical design principles. BO
lgorithms were initially and most commonly used for model
yperparameter optimization but have gradually evolved into
 method for active learning, also known as adaptive design
21] . The utilization of BO for the discovery and optimiza-
ion of novel materials has become a trending topic in the
eld of materials science. The effectiveness of BO in dealing
ith extremum problems makes them particularly useful for

earching for optimal material properties [22] . For instance,
owen et al. [23] constructed a BO framework using various

urrogate models, which can automatically search for the op-
imal composition of materials. An BO active learning model
as developed by Liu et al. to find the ultra-hard magnesium

lloys [24] . Another example comes from Chen et al., who
reated prediction models for B-C-N super-hard compounds,
ith their methodology centered around BO [25] . Further-
ore, Joshua et al. [26] proposed an BO model for exploring
echanical properties, which can predict properties beyond

he original training data of materials and has been validated
sing a materials database containing 85,707 crystal struc-
ures. 

In this study, an improved machine learning model,
BOALM, was established for designing high-performance
g-Mn-based wrought alloys. We innovatively replaced the
aussian Process (GP) with a well-established regression
odel as the surrogate function in RBOALM, thereby en-

ancing the data fitting capability and improving the effec-
iveness of BO. The extremum solutions of yield strength,
ltimate strength, and fracture elongation were computed us-
ng RBOALM. Subsequently, several high-performance Mg
lloys were designed based on the active learning results, and
xperimental validations were conducted to evaluate the pre-
ision of the RBOALM. 

. Methods 

.1. Design strategy 

In this work, an active learning design strategy was pro-
osed to optimize the strength and plasticity of Mg-Mn-
ased wrought alloys by coupling multiple regression algo-
ithms and BO. The workflow of design strategy is shown in
ig. 1 , and mainly steps are as follows: 

(1) Dataset and feature. Collected data on Mg-Mn-based
extruded alloys from published literatures and previous
experimental results to generate a dataset. And deter-
mined the input features and output targets of the model
by feature analysis and feature screening. 

(2) Active learning. Developed the RBOALM using multi-
ple regression algorithms and BO, relating the compo-
sition and process parameters to mechanical properties
of alloys. In this step, BO algorithm is employed firstly
to optimize the hyperparameters of the regression mod-
els, thus reducing model errors. Subsequently, leverag-
ing the optimal regression model as a surrogate function
for BO, the mechanical performance of alloy is further
optimized using BO. 

(3) Alloys design and experimental validation. Using active
learning, the problem of optimizing alloy properties is
converted into a problem of finding the extreme value
of a function, followed by the design of novel high-
strength and high-plasticity alloys. Subsequently, based
on the outcomes of the active learning model, the alloys
are synthesized and experimentally validated, and the
design errors are computed to evaluate the performance
of the model. 
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Fig. 1. Schematic diagram of the workflow of the active learning design strategy. 
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.2. Features and Dataset 

Training and testing data are mainly collected from Refs
2 , 7 , 9 , 10] , [27-54] and some previous experiments. All sam-
les exclusively consist of extruded rod materials belonging
o the Mg-Mn-based systems. Based on the original data and
ome research results, 10 items, including alloy composition,
xtrusion process parameters, and mechanical properties, were
elected as the features. The feature selection and establish-
ent of the raw data table primarily adhere to the following

rinciples: 

(1) Alloy composition: The alloy composition feature in-
cludes five elements, Mn, Al, Zn, Sn, and Ca. The rea-
sons for selecting these five elements are: (i). Al, Zn,
Sn, and Ca have been utilized as alloying elements in
the development of various high-performance Mg-Mn-
based systems, such as AZ, AM, ZM, and AMZ, indi-
cating their potential for further enhancing alloy proper-
ties. Extensive experimental studies conducted on these
alloy systems provide ample data for machine learning.
(ii). Compared to rare earth-containing alloy systems,
these systems exhibit alloy properties that are relatively
close to rare earth systems while featuring lower ele-
ment costs, enabling significant reduction in production
expenses. 

(2) Extrusion process parameter: Extrusion is a crucial pro-
cess of wrought Mg alloys. During the hot extrusion,
dynamic recrystallization and texture formation occurs,
which directly impacting the final properties. Addition-
ally, all alloy samples in the dataset are rods, which
are directly extruded from ingots after being held at the
extrusion temperature. Alloys that underwent preheat-
treatment processes (such as homogenization) were not
selected in this study. This helps reduce the number of
input features and effectively control production costs.
Some researches show that extrusion temperature and
extrusion speed have significant influence on the qual-
ity of Mg alloys [2 , 31 , 36 , 46 , 47] . Generally, the extru-
sion ratio (ER) is also an important factor affecting the
structure and properties of alloys, but in this work, the
distribution of ER is too concentrated to make signifi-
cant effect on the targets (Among the 310 data, 236 in-
stances had an ER value of 25, and some with 20 or 28).
Therefore, in order to improve the learning efficiency
and accuracy of model, only extrusion temperature (ET,
◦C) and extrusion speed (ES, m/min) are selected as the
primary extrusion process features. 

(3) Mechanical property: Generally, yield tensile strength
(YTS, MPa), ultimate tensile strength (UTS, MPa), and
fracture elongation (FE, %) are commonly used to re-
flect the mechanical properties of alloys. Therefore,
these three attributes are chosen as the feature parame-
ters for alloy mechanical performance. 

Based on the aforementioned principles, the database for
BOALM was established, comprising a total of 310 data

ets. Each data set consists of 10 features, as shown in
able 1 . In regression models, the inputs are alloy compo-
itions and extrusion process parameters, while the outputs
re mechanical properties. In BO process, no inputs need to
e set and the model outputs the extremes of performance as
ell as the corresponding solutions for the composition and

xtrusion parameters. 
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Table 1 
Definitions and ranges of features in the RBOALM dataset. 

Feature Range 

Composition Mn (wt.%) 0–3.00 
Al (wt.%) 0–9.00 
Zn (wt.%) 0–8.80 
Sn (wt.%) 0–9.70 
Ca (wt.%) 0–3.50 

Extrusion parameter Extrusion Temperature ( °C) 175–500 
Extrusion Speed (m/min) 0.2–12.0 

Mechanical property Yield Tensile Strength (MPa) 98–438 
Ultimate Tensile Strength (MPa) 154–457 
Fracture Elongation (%) 2.5–55.0 
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.3. Algorithms 

Herein, the RBOALM couples four regression and BO al-
orithms, where the regression algorithms are used to estab-
ish the connection between features and property targets, and
s well as a surrogate function in RBOALM. The BO algo-
ithm is used to optimize the hyper parameters of regression
odels and also to search for the best solutions of extreme

erformance values. All algorithms related in this paper are
escribed below. 

.3.1. Gradient boosting regression 

Gradient Boosting Regression (GBR) is a powerful ma-
hine learning algorithm that falls under the umbrella of en-
emble learning methods. Ensembles combine multiple weak
earners, typically decision trees, to create a strong predictive
odel. GBR is widely used in various domains, including fi-

ance, healthcare, and industry, due to its ability to handle
omplex non-linear relationships and high-dimensional data.
ts iterative boosting process allows it to correct errors and im-
rove predictive accuracy. With its ability to handle complex
on-linear relationships and missing data, GBR has found
idespread use in diverse fields and continues to be a valu-

ble tool for data-driven decision-making [55 , 56] . 

.3.2. Support vector regression 

The regression algorithm of Support Vector Machines
SVM) is also known as Support Vector Regression (SVR)
nd is a supervised machine learning algorithm primarily used
or regression problems. Similar to the SVM classification al-
orithm, the core idea of it is to construct a hyperplane that
aximizes the minimum distance between the samples in the

raining set and the regression line (hyperplane), aiming to
chieve regression predictions for new data points. The ad-
antages of SVR lie in its ability to handle high-dimensional
ata and nonlinear regression problems while avoiding over-
tting. However, it is sensitive to parameter selection and re-
uires parameter tuning, and the computational complexity of
he algorithm is relatively high. SVR is a powerful regres-
ion analysis algorithm widely applied in practical problems
57 , 58] . 
.3.3. Decision tree regression 

Decision Tree Regression (DTR) is a variant of the deci-
ion tree algorithm and is a regression algorithm based on a
ree-like structure. It is used when there is a need to predict
 continuous output value based on input features. The DTR
lgorithm can be employed in such cases. DTR algorithm
tilizes a tree-like structure to represent the relationship be-
ween input features and outputs, where each non-leaf node
epresents a feature and each leaf node represents an out-
ut value. When constructing a DTR model, the algorithm
nitially selects a feature and divides the data set into two
ubsets based on that feature. Then, for each subset, the al-
orithm recursively repeats this process by selecting the best
eature for further division until certain stopping criteria are
et. Upon meeting the stopping criteria, the algorithm out-

uts the average output value of the subset at the leaf node
s the prediction result [57 , 58] . 

.3.4. Random forest regression 

The Random Forest Regression (RFR) is a machine learn-
ng algorithm based on an ensemble of decision trees. Its

ain idea is to analyze data through the construction of mul-
iple decision trees and combine the results of these trees to
mprove the accuracy and robustness of regression analysis.
he RFR algorithm offers advantages such as high accuracy,

obustness, and strong generalization performance. It can be
pplied to various regression problems, particularly suitable
or high-dimensional data and situations with significant noise
57 , 59] . 

.3.5. Bayesian optimization 

Bayesian Optimization (BO) is an algorithm that uses
ayesian statistical methods for optimization. It dynamically
djusts the search space based on existing data to find the op-
imal solution for the target function [60] . Specifically, the BO
lgorithm constructs a prior distribution for the target function
typically using Gaussian processes or tree structures) and a
ikelihood function. It then applies Bayesian inference to com-
ute the posterior distribution of the target function, thereby
dentifying potential optimal points in the search space. Un-
ike traditional optimization algorithms, BO does not require
he use of gradient information of the target function, making
t suitable for black-box optimization problems. The advan-
ages of the BO algorithm are its ability to quickly find global
ptima in high-dimensional, non-convex, and noisy settings
23 , 61] . 

.3.6. Gaussian process 
In the BO algorithm, it is necessary to determine the prior

istribution and likelihood function of the target function,
here the prior distribution is also known as the surrogate
odel, typically represented using Gaussian process. Gaus-

ian process (GP) is a tool for probabilistic modeling, com-
only used to estimate the distribution of unknown function

alues and provide quantification of uncertainty. In BO, Gaus-
ian processes are employed as surrogate models of the target
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unction, providing estimates of the target function during the
ampling and fitting processes [62 , 63] . 

All the regression ML algorithms in this work come
rom the scikit-learn library ( http://scikit-learn.sourceforge.
et.). And the Bayesian Optimization algorithm was based
n Bayesian-Optimization module in Python. 

. Modeling 

.1. Feature analysis and screening 

In the present work, the correlation coefficients between
eatures and targets were calculated, which are shown in
ig. 2 . Fig. 2 (a) presents the heatmap of Pearson correlation
oefficients, which was used to assess the linear correlation
etween features and targets. Fig. 2 (b) shows the Spearman
orrelation coefficients, which was used to evaluate the mono-
onic correlations. From the figures, it can be observed that
he absolute values of the majority of Pearson and Spear-
an coefficients are less than 0.3, indicating weak linear and
onotonic correlations between features and targets. There-

ore, non-linear and non-monotonic algorithms are more suit-
ble and will be employed for the subsequent modeling tasks
n this study. 

Moreover, some insights can be gleaned from Fig. 2 . For
nstance, in Fig. 2 (a), the correlations of Al, Zn, and Sn with
TS appear notably similar, suggesting a potential positive
Fig. 2. The correlation coefficients between features and targets. (a) Pea
ynergistic interaction among these three elements. This im-
lies that the UTS of an alloy can be boosted by increasing
hese elements, especially in the form of compounds. Simi-
arly, a negative synergistic interaction is indicated between

n and Al, implying that the performance of the alloys could
e improved by increasing the ratio of Al and Mn (Al/Mn).
urthermore, as observed in Fig. 2 (b), features such as Ca and
S exhibit closely aligned Spearman coefficients, indicating a
onsistent monotonic influence of Ca and ES on alloy perfor-
ance. In alloy design, simultaneous consideration of these

wo features may be beneficial. 
In this work, a random forest model was employed to cal-

ulate the importance of features with the aim of identifying
he key features that affect the mechanical properties of the
lloys. Additionally, principal component analysis (PCA) was
onducted to achieve effective dimensionality reduction of the
ataset. By using the selected features, ML models were built,
eading to significant improvements in model accuracy and
t. The feature importance was computed using the Mean
ecrease impurity (MDI) method, which evaluates the extent
o which each feature reduces the errors in regression prob-
ems. The sum of feature importance is equal to 1, and the
alue of each feature importance represents the weight of its
mpact on the output of the regression model [64–66] . After
arameter optimization, the random forest model was con-
gured with ’n_estimators = 200′ and ’max_depth = 10′ . The
omputed results are shown as Fig. 3 . As mentioned before,
rson correlation coefficients. (b) Spearman correlation coefficients. 

http://scikit-learn.sourceforge.net


X. Mi, L. Dai, X. Jing et al. / Journal of Magnesium and Alloys 12 (2024) 750–766 755 

t  

a  

t  

t  

c  

i  

f  

t  

e  

a  

n  

c
 

r  
he extrusion ratio (ER) is also an important parameter that
ffects the mechanical properties of the alloys. Therefore, in
he initial modeling stage of this study, we chose the ex-
rusion ratio as one of the input features and calculated the
orresponding feature importance. The computational results
llustrated that the feature importance of the extrusion ratio
or YTS, UTS and FE were 0.03, 0, and 0.01, which indicated
Fig. 3. Feature importance of mechanical properties. (a) Feature importance fo
hat the extrusion ratio is not a main factor affecting prop-
rties in this work, due to its over-concentrated distribution,
nd thus, in this paper the extrusion ratio feature was elimi-
ated so as to improve the model accuracy and generalization
apability. 

Fig. 3 shows the calculated results of feature importance,
evealing that the main factors affecting YTS, UTS, and FE
r YTS. (b) Feature importance for UTS. (c) Feature importance for FE. 
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Fig. 3. Continued 
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re not the same. As shown in Fig. 3 (a), in Mg-Mn-Al-Zn-Sn-
a system alloys, ES is the most significant influencing fac-

or concerning YTS with a feature weight of 0.19. Following
hat, the Mn, Sn, Zn, ET, Al and Ca contribute with feature
eights of 0.18, 0.15, 0.15, 0.14, 0.13 and 0.06, respectively.

t suggests that when designing the tensile yield strength of
g-Mn-Al-Zn-Sn-Ca alloys, priority should be given to ex-

rusion speed and the Mn content in the alloys, followed by
onsidering factors such as Sn, Zn, ET, and Al content. In
ig. 3 (b), the weights of Zn and Mn both exceed 0.2, sug-
esting that the second-phase behavior of Mn and Zn in the
ystem significantly impacts the ultimate tensile strength of
he alloys. Furthermore, the feature importance of ES notice-
bly decreases, indicating that the effect of extrusion speed
n ultimate tensile strength is considerably weaker compared
o yield strength. Fig. 3 (c) reveals that related to FE, the im-
act of ET is the highest with a weight of 0.28, followed by
l and Mn, both around 0.2. The influence of Sn and ER is
egligible and can be disregarded. This implies that the Mg-
n-Al system holds the potential for developing high ductil-

ty wrought Mg but requires optimal matching of extrusion
rocess parameters, particularly extrusion temperature. 

.2. Model building and optimization 

In the construction of the RBOALM, the BO algorithm was
mployed twice for different requirements. The first applica-
ion was for optimizing the hyperparameters of the regres-
ion models, while the second was coupled with the regres-
ion models to design high-performance alloys. In a typical
O model, it is common to use the Gaussian process (GP)
s a surrogate function. However, in this work, we innova-
ively used a well-established regression model as the surro-
ate function to search for extrema in BO. The main reason
s a well-established regression model can describe the map-
ing relationship of inputs and outputs more accurate than
P, which can make the BO process more efficient. 
Firstly, three regression models were constructed, with

ach model designed to specifically describe the relationship
etween the components, process parameters, and YTS, UTS,
E, respectively. And then BO was employed to optimize the
yperparameters of all regression models for better accuracy.
he modeling and optimization process of the three regression
odels is as follows: 

.2.1. Regression models of YTS 

Based on the feature analysis results from the previous
ection, it has been determined that the principal factors
or the YTS of Mg-Mn-based alloys are ES, Mn, Sn, Zn,
T, and Al. As a result, a new YTS dataset has been con-
tructed by extracting these features from the original dataset
or each data entry. The input features of the YTS regres-
ion model include ES, Mn, Sn, Zn, ET, and Al, while the
utput feature is YTS. The dataset size and the range of fea-
ure parameter values are consistent with those presented in
able 1 . 

Gradient boosting regression (GBR), support vector regres-
ion (SVR), decision tree regression (DTR), and random for-
st regression (RFR) algorithms were used to establish the
TS prediction models. The performance of these models
as evaluated using mean absolute error (MAE) and mean

bsolute percent error (MAPE) as quantitative metrics after
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onducting cross-validation, which are defined as follows: 

AE = 1 

n 

n ∑ 

i=1 

∣∣yi − y′ 
i 

∣∣ (1) 

APE = 1 

n 

n ∑ 

i=1 

∣∣yi − y′ 
i 

∣∣
| yi | (2) 

In Eqs. (1) and (2) , yi and y′ 
i denote the actual value and

he predicted value of YTS, n is the size of the training or
est set. The training and testing set ratio for all algorithm
odels was set to 7:3. Subsequently, the BO algorithm was

mployed with the optimization criterion of minimizing the
APE to optimize the hyperparameters of the YTS regression
odel. In the computational results of this study, MAE and
APE exhibit a clear positive linear correlation. Therefore, it

s sufficient to choose one as the hyperparameter BO criterion,
nd in this paper, we have selected ’Minimize MAPE’ as
he criterion. The initial observation points for the BO model
ere set to 10, and the number of iterations was set to 100. 
In the GBR model, the key hyperparameters for optimiza-

ion were “n_estimators’’ and “max_depth’’. The optimization
ange for the “n_estimators’’ parameter was set to 50-500,
hile the optimization range for the “max_depth’’ parameter
as set to 5-20. For the SVR model, the “kernal’’ = ‘rbf’, and

he optimization range for both the “C’’ and “gamma’’ param-
ters was set to 0.001-1000. The main optimization parameter
or the DTR algorithm was the maximum tree depth, with the
ptimization range for the “max_depth’’ parameter set to 5-
0. In the case of RFR, the primary optimization parameters
ere “n_estimators’’ and “max_depth’’, with the optimization

ange for “n_estimators’’ set to 50-500, and for “max_depth’’
et to 5-20. The results before and after BO are presented in
able 2 , and the corresponding MAPE results are illustrated

n Fig. 4 From the figures, it can be observed that the DTR
odel had the highest error, followed by GBR and SVR,
hile the RFR model exhibited relatively smaller errors. The
ptimized MAPE after BO was found to be 16.6%. 

Fig. 5 shows the fitting plots of the four ML models. The
oints on the dashed line ‘y = x’ represent the predictions of
he models that are identical to the actual values. Therefore,
he closer the distribution of points is to the dashed line, the
igher the degree of model fitting and the stronger the gen-
ralization ability. Among them, the SVR and DTR models
xhibit relatively low fitting (R2 ) scores, both below 0.50. In
ontrast, the GBR and RFR models demonstrate higher de-
rees of fitting. The GBR model achieves a fitting score of
able 2 
he hyperparameters and errors of YTS models optimized by BO. 

odel GBR SVR 

yperparameters before BO n_estimators = 100, max_depth = 8 C = 100
yperparameters after BO n_estimators = 427, max_depth = 11 C = 904
AEs before BO 23.2 25.7 
APEs before BO 24.7% 21.7%
AEs after BO 20.9 21.2 
APEs after BO 21.1% 19.6%
.75, while the RFR model performs the best with an R2 

core of 0.80. This finding is consistent with the MAPE er-
or calculations. Therefore, considering all factors, the RFR
odel is selected as the surrogate model (prior distribution

unction) for subsequent active learning model work, denoted
s RFR-YTS. 

.2.2. Regression models of UTS 

From Fig. 3 (b), it can be observed that for Mg-Mn-based
rought alloys, the main influential factors affecting UTS are
n, Mn, ET, Sn, Ca, Al, and ES. Therefore, the corresponding

eatures of each data group were extracted from the dataset to
econstruct the UTS dataset. The input features for the UTS
egression model are Zn, Mn, ET, Sn, Ca, Al, and ES, while
he output feature is UTS. The data size and feature parameter
ange remain the same as in Table 1 . The modeling method
nd initial modeling parameters for the UTS regression model
re identical to those of the YTS regression model, and the
O algorithm is also employed to optimize the hyperparam-
ters. The optimized hyperparameters and errors before and
fter BO are shown in Table 3 . 

The optimized MAPE is depicted in Fig. 6 . From the
raph, it can be observed that the DTR model exhibits the
ighest error, while the SVR model has the lowest error. The
ptimized MAPE after BO is 12.5%. Fig. 7 shows the fitting
esults of the four UTS regression models. The R2 values of
BR, SVR, DTR and RFR models for the test set are 0.75,
.77, 0.48, and 0.73, respectively. Additionally, since the SVR
odel exhibits the minimum MAPE, it is selected as the sur-

ogate function for subsequent active learning model work,
enoted as SVR-UTS. 

.2.3. Regression models of FE 

From Fig. 3 (c), it can be observed that the main features
nfluencing FE are ET, Al, Mn, ES, Zn, and Ca. Therefore,
imilar to the YTS and UTS models, when constructing the
E model, the input features selected are ET, Al, Mn, ES,
n, and Ca, while the output feature is FE. The modeling
ethod and initial modeling parameters for the FE model are

he same as the YTS and UTS prediction models, and the
yperparameters of the model are optimized using the BO
lgorithm. The optimized hyperparameters and errors before
nd after BO are shown in Table 4 . From Fig. 8 , it can be
bserved that the RFR model exhibits the lowest MAE and
APE errors, with optimized values of 3.7 and 32.3%, re-

pectively. It is worth noting that although the MAE values
or all models are less than 5, the MAPE values exceed 30%.
DTR RFR 

, gamma = 1 max_depth = 6 n_estimators = 100, max_depth = 6 
, gamma = 0.24 max_depth = 8 n_estimators = 206, max_depth = 9 

32.9 27.2 
 28.5% 18.9% 

26.7 22.5 
 24.9% 16.6% 
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Fig. 4. Comparison of errors (MAPE) before and after using BO in YTS regression models. 

Fig. 5. Fitting performance of four YTS regression models. 
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Fig. 6. Comparison of errors (MAPE) before and after using BO in UTS regression models. 

Fig. 7. Fitting performance of four UTS regression models. 
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Table 3 
The hyperparameters and errors of UTS model optimized by BO. 

Model GBR SVR DTR RFR 

Hyperparameters before BO n_estimators = 100, max_depth = 8 C = 100, gamma = 1 max_depth = 6 n_estimators = 100, max_depth = 6 
Hyperparameters after BO n_estimators = 301, max_depth = 10 C = 904, gamma = 0.24 max_depth = 8 n_estimators = 206, max_depth = 9 
MAEs before BO 17.9 21.1 26.1 21.1 
MAPEs before BO 16.6% 13.3% 17.0% 13.2% 

MAEs after BO 15.3 17.2 22.3 20.5 
MAPEs after BO 14.1% 12.5% 16.5% 12.9% 

Table 4 
The hyperparameters and errors of FE model optimized by BO. 

Model GBR SVR DTR RFR 

Hyperparameters before BO n_estimators = 100, max_depth = 8 C = 100, gamma = 1 max_depth = 6 n_estimators = 100, max_depth = 6 
Hyperparameters after BO n_estimators = 227, max_depth = 10 C = 904, gamma = 0.24 max_depth = 8 n_estimators = 206, max_depth = 9 
MAEs before BO 3.7 4.5 4.3 3.8 
MAPEs before BO 46.3% 47.4% 48.1% 36.9% 

MAEs after BO 3.2 4.3 4.1 3.7 
MAPEs after BO 37.2% 35.3% 39.2% 32.3% 

Fig. 8. Comparison of errors (MAPE) before and after using BO in FE regression models. 
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his indicates that these models cannot accurately describe
he relationship between the input features and FE. The main
easons for this are: (i). The dataset size is relatively small,
nd it is not sufficient to establish a comprehensive relation-
hip for FE using only this limited data. (ii). The selection
f features is inappropriate, and some features have become
oisy points, interfering with the establishment of the rela-
ionship function. 

Fig. 9 displays the fitting results of the FE prediction mod-
ls. From the graph, it can be observed that the SVR model
xhibits the lowest fit, with a test set R2 value of 0.58, indi-
ating poor performance. On the other hand, GBR and DTR
odels show similar levels of fit, with test set R2 values of
.68 and 0.67, respectively. However, the RFR model demon-
trates the best fitting performance, with a test set R2 value of
.70. Therefore, the RFR model is chosen as the prior func-
ion distribution (surrogate model) for subsequent Bayesian
ptimization of alloy plasticity models, denoted as RFR-FE. 

. Active learning and alloys design 

Theoretically, the regression models established previ-
usly can predict the tensile yield strength, ultimate tensile
trength, and fracture elongation of any Mg alloy with
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Fig. 9. Fitting performance of four FE regression models. 
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pecific compositions and extrusion processes. However, due
o the limited training data, which only covered a range
f knowledge domains for the entire Mg-Mn-Al-Zn-Se-Ca
ystem. When the model is applied outside of this domain,
here is significant uncertainty. Furthermore, from practical
pplication perspectives, researchers are often more interested
n preparing alloys with higher strength or ductility. Machine
earning models are generally black boxes, but if one is only
nterested in obtaining detailed information about the best-
erforming point within this black box, it is not necessary
o traverse all the solutions in the entire ML model. It is
ufficient to find the extreme value of this function, and the
O algorithm can effectively solve this problem. 

In this section, an active learning model (RBOALM) based
n Bayesian optimization algorithm was developed to guide
he design of novel high-performance Mg alloys. The core
hought of the RBOALM is to transform the problem of find-
ng the optimal performance of alloys into a problem to search
n extreme solution to a regression model. Generally, Gaus-
ian Process (GP) is used as the prior distribution function in
O, also known as the surrogate model (or surrogate func-

ion). In this paper, in addition to using GP, the previously es-
ablished regression models RFR-YTS, SVR-UTS, and RFR-
E aforementioned were also employed. This was done to
xplore whether using the established regression models as
eplacements for the GP function could provide a more ap-
ropriate description of the relationship between features and
argets. The optimization process of RBOALM consists of
our main steps: 

Step 1: Establishing a surrogate function from the existing
aterial dataset, which in this paper refers to the previously

stablished regression models. These models can predict the
alues of target properties (YTS, UTS, and FE) based on the
haracteristics of any new material, such as compositions and
rocess parameters. 

Step 2: Apply the surrogate functions to the entire prede-
ned search space to predict the performance of unexplored
lloys. 

Step 3: Constructing a utility function to determine the
andidate materials for the next synthesis step. The utility
unction aims to balance the search for high-performance new
lloys, the utilization of these alloys to expand the existing
nowledge domain, and the reduction of overall uncertainty
n the entire search space. 

Step 4: Taking experimental tests of candidate materials,
hich are then added to the dataset. The surrogate model is
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Table 5 
Bayesian optimization of the search space. 

Feature Search range Interval Total 

Mn 0-5.0 wt.% 0.1 50 
Al 0-10.0 wt.% 0.1 100 
Zn 0-10.0 wt.% 0.1 100 
Sn 0-10.0 wt.% 0.1 100 
Ca 0-4.0 wt.% 0.1 40 
ET 175-550 ◦C 5 75 
ES 0.5-15.0 m/min 0.5 29 
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e  
pdated using the enhanced dataset. The four steps mentioned
bove are repeated multiple times until the target properties
each their limits. 

Using the RBOALM, we searched the designated compo-
ition and process parameter space to find wrought Mg alloys
ith the highest YTS, UTS, and FE values, respectively. The
riginal ranges of each parameter in the dataset ( Table 1 ) were
s follows: Mn: 0-3.0 wt.%; Al: 0-9.0 wt.%; Zn: 0-8.8 wt.%;
n: 0-9.7 wt.%; Ca: 0-3.5 wt.%; ET: 175-500 ◦C; ES: 0.2-12
/min. When defining the search space for composition and

rocess parameters, and appropriately expanded the ranges
f the features to broaden the existing knowledge domain.
able 5 shows the search ranges of BO space, from which

t can be inferred that it would require a total of 4.35 ×1012 

omputations to compute all feature combinations and select
he extreme values by using conventional grid, enumeration,
r iterative methods. Such a vast computational burden would
ignificantly consume computing and time resources. Opting
or the BO approach, we gradually obtained the global max-
mum through sampling, and the entire computation process
ook only a few minutes [67] . 

In the alloy design process, the BO method was employed,
ith GP, RFR-YTS, SVR-UTS, and RFR-FE used as surro-
ate functions, to explore the compositions and process pa-
ameters of high-performance alloys. Among these, three sets
f alloys were designed using GP as the surrogate function in
 control experiment to compare the improvement in model
esign accuracy before and after replacing GP with regres-
ion models. When designing alloys using the GP function,
ll feature parameters were chosen to be the same as the cor-
esponding regression models. In the active learning process,
he maximum number of iterations for BO was set to 100,
nd the process was terminated once this iteration limit was
eached. The acquisition function used in this model was the
fficient global optimization (EGO) utility function [68] , as
hown in Eq. (3) . The Expected Improvement ( EI ) value for
ach model was calculated based on the formula, represent-
ng the expected improvement upon incorporating new data.
ere, μ and δ denote the mean and standard deviation of

he predicted performance of the selected new materials us-
ng the current surrogate model, z = ( μ - μ∗) / δ, where μ∗ is
he maximum performance value in the current dataset. Ad-
itionally, ϕ( z ) and �( z )are the standard normal density and
umulative distribution function [24] . 

 I( μ, δ) = δ[ ϕ( z) + Z( �( z) ) ] (3)
Generally, ML models are considered as ’black boxes’,
aking it challenging to observe the internal mechanisms and

ata flow of the ML system using conventional modeling tech-
iques. In this paper, we innovatively present a visualization
f the BO process with Al, Mn and YTS. This visualiza-
ion allows us to gain a clear understanding of the proposed
egression-Bayesian active learning process, as depicted in
ig. 10 . Fig. 10 (a) illustrates the heat map of the simulated
elationship between Al and Mn contents and YTS using the
FR model. Each point in the graph represents a combina-

ion of Al and Mn components, with the color indicating the
orresponding YTS value. It is evident from the graph that
hree distinct regions exhibit a light-yellow shade, indicating
igher yield strength within these areas. Fig. 10 (b) showcases
he optimization process using BO within the compositional
pace simulated by the RFR model. The green points repre-
ent observation points for each iteration, while the red point
ndicates the globally optimal solution found by the active
earning model after completion of the iterations, represent-
ng the point with the highest YTS value in the entire space.
rom Fig. (b), it is evident that when considering only Al
nd Mn as features, the global maximum value of YTS is
27 MPa, corresponding to Al and Mn contents of 1.1 wt.%
nd 2.5 wt.%, respectively. 

In the actual alloy design of this work, both the YTS and
E regression models have six input features, while the UTS
odel has seven input features. This presents a significantly
ore complex scenario than the one depicted in Fig. 10 , mak-

ng it impossible to visualize the high-dimensional feature
pace of the BO workflow effectively. Nonetheless, the opti-
ization principles and procedures remain identical to those

llustrated in Fig. 10 . 
After optimizing each property of the alloy 10 times using

he RBOALM, the top one sets with the highest EI values
or each model were selected as the final results for alloy
esign. After multiple iterations, the alloy design results are
hown in Table 6 , represented by six alloys named as GP-
TS, GP-UTS, GP-FE, RFR-YTS, SVR-UTS and RFR-FE.
he name of each alloy represents the type of surrogate func-

ion used and the optimized performance objective. From the
able, it can be observed that when optimizing different alloy
erformance, the designed compositions and extrusion pro-
ess parameters exhibit significant variations. However, when
ptimizing the same performance, whether employing GP or
egression models as surrogate functions, the design outcomes
how relatively minor discrepancies. This observation sug-
ests that within the BO process, the optimization directions
f regression-Bayesian and Gaussian- Bayesian are aligned.
urthermore, it also can be observed that the extrusion tem-
erature for high-strength alloys is higher than that for highly
uctile alloys, while there is no apparent pattern in extrusion
peed. 

. Experimental validation and model evaluation 

After completing the active learning design, six alloys were
xperimentally verified based on the design schemes provided
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Fig. 10. Bayesian optimization process diagram for YTS performance with dual features Al and Mn. (a) Heatmap of YTS performance simulated by RFR 

model. (b) Bayesian optimization process diagram for YTS performance. 

Table 6 
The optimal results of properties and alloy design plans predicted by RBOALM. 

Alloy Predicted maximum Alloy compositions(wt.%) ET (◦C) ES (m/min) 

GP-YTS YTS = 203 MPa Mg-1.0Mn-0.1Al-5.0Zn-4.0Sn 350 1.0 
GP-UTS UTS = 387 MPa Mg-1.5Mn-1.5Al-1.0Sn-0.2Ca 300 3.0 
GP-FE FE = 49% Mg-0.5Mn-0.8Zn 270 2.0 
RFR-YTS YTS = 253 MPa Mg-0.8Mn-0.3Al-5.3Zn-3.6Sn 365 6.0 
SVR-UTS UTS = 408 MPa Mg-2.0Mn-2.1Zn-0.5Sn-0.1Ca 300 1.5 
RFR-FE FE = 55% Mg-2.7Mn-0.5Al-0.1Ca 270 2.5 
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2

n Table 6 . The alloy ingots used in this study were pre-
ared through a melting process. Prior to casting, the raw
aterials were cut into uniform small pieces, and the surface

xide layer was removed to ensure a smooth surface. The
ngredients were then weighed and mixed accordingly. Dur-
ng the casting process, pure magnesium was first placed in
 stainless-steel crucible (with dimensions of ϕ90 mm × 300
m) and completely melted by heating at approximately 720

C. Once the pure magnesium was molten, the alloying ele-
ents were sequentially added to the melt, and the alloy was

tirred to ensure a homogeneous composition. Throughout the
ntire process, a mixed gas of CO2 (99 vol.%) and SF6 (1
ol.%) was used as the protective atmosphere to prevent ox-
dation. The melt was left undisturbed and kept at a constant
emperature for 15 minutes to ensure complete alloy melt-
ng. After melting, the molten alloy undergoes water cooling,
utting, and cleaning, resulting in ingots with a diameter of
0 mm. Subsequently, the ingots labeled as RFR-YTS, SVR-
TS, RFR-FE, GP-YTS, GP-UTS and GP-FE were obtained

nd further processed through extrusion. 
Extrusion was carried out using an XJ-500 horizontal

xtrusion machine at temperatures of 365 °C, 300 °C, 270
C, 350 °C, 300 °C, and 270 °C for ingots, respectively. The
ngots were preheated for 30 minutes before extrusion at each
emperature. The extrusion speeds were set at 6.0 m/min, 1.5
/min, 2.5 m/min, 1.0 m/min, 3.0 m/min, and 2.0 m/min,
espectively, to obtain four rods with a final diameter of 16
m. Tensile tests were performed on the extruded samples

sing an electronic universal testing machine (CMT6305-300
N) with a strain rate of 1 × 10−3 s−1 . The engineering

tress-strain curves for the extruded alloys are shown in
ig. 11 . 

After measurement and statistical analysis, the mechanical
roperties of each alloy are presented in Table 7 , comparing
he predictive performance of using regression models as sur-
ogate functions versus using GP functions. The optimization
erformance predicted using SVR-UTS, RFR-YTS, and RFR-
E as surrogate functions all outperformed the GP model,
ith a notable enhancement in YTS performance, exceeding
0 MPa. When contrasting the mechanical performance met-
ics of the data set, the use of regression models in place
f GP functions resulted in predictive values that closely ap-
roximated, and even surpassed, the extremal values present
n the data set. This observation underscores the evident im-
rovement in the ability of the active learning model to com-
ute extrapolated boundaries upon adopting regression mod-
ls to replace GP functions. The computed results indicate
hat the performance extrapolated boundaries for tensile yield
trength, ultimate tensile strength, and fracture elongation are
53 MPa, 408 MPa, and 55%, respectively. 
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Fig. 11. The tensile engineering stress-strain curves of verification alloys. 

Table 7 
Predicted and experimental properties of verification alloys. 

Target Alloy Predictive property Tested property Error 

YTS GP-YTS YTS = 203 MPa YTS = 183 MPa 10.9% 

RFR-YTS YTS = 253 MPa YTS = 202 MPa 25.2% 

UTS GP-UTS UTS = 387 MPa UTS = 361 MPa 7.2% 

SVR-UTS UTS = 408 MPa UTS = 406 MPa 0.5% 

FE GP-FE FE = 49% FE = 28% 75.0% 

RFR-FE FE = 55% FE = 41% 34.1% 
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In terms of performance design, concerning the ultimate
ensile strength of the alloys, whether using regression mod-
ls or GP function models, the actual UTS of the designed
lloys closely matched the predicted UTS, with errors not ex-
eeding 10.0%. In fact, the validation error for the SVR-UTS
lloy was as low as 0.5%. This demonstrates the effectiveness
f BO in developing high UTS magnesium alloys, and the
VR-UTS alloy exhibits outstanding comprehensive mechan-

cal properties, with a ultimate tensile strength of 406 MPa,
ield strength of 287 MPa, and fracture elongation of 23%.
egarding the yield tensile strength of the alloys, the valida-

ion error for the regression-Bayesian model was higher than
hat of the GP-Bayesian model. However, the validated yield
trength was 24 MPa higher, indicating that the regression
ayesian model was more effective in computing extremal
oints and yielding better practical alloy designs. As for the
racture elongation of the alloys, the substitution of the GP
unction with the RFR model reduced the design error from
5.0% to 34.1%, leading in a 13% improvement of the de-
igned performance. Overall, the RBOALM established in this
tudy demonstrated superior performance in designing high-
erformance alloys, with the most optimal results achieved
hen designing high UTS magnesium alloys, and the design
ccuracy not falling below 90%. 

. Conclusions 

This paper presents RBOALM, a novel machine learning-
ased alloy design model that combines active learning with
egression and Bayesian optimization algorithms. RBOALM
as developed specifically for designing high-performance
et cost-effective Mg-Mn-based wrought Mg alloys. Both re-
ression models and GP functions were employed as surro-
ate functions for Bayesian optimization to optimize the me-
hanical properties of alloys, leading to the development of
everal new high-performance Mg alloys. The main conclu-
ions of this study are as follows: 

(1) Four regression algorithms were separately employed to
construct predictive models. The random forest regres-
sion (RFR) and support vector regression (SVR) mod-
els had the highest accuracy, with goodness of fit close
to 0.8. Utilizing these regression models, the extrap-
olated limits for yield tensile strength, ultimate tensile



X. Mi, L. Dai, X. Jing et al. / Journal of Magnesium and Alloys 12 (2024) 750–766 765 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D

 

fi  

a

C

 

o  

t  

S  

o  

q  

P

A

 

t  

t  

j  

a  

a  

p

R

 

 

 

 

 

 

 

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[

strength, and fracture elongation were calculated as 253
MPa, 408 MPa, and 55%, respectively. These calculated
results provide valid confidence intervals for alloy de-
sign. 

(2) In RBOALM, Bayesian optimization algorithm was em-
ployed firstly to optimize the hyperparameters of the re-
gression models, resulting in improved precision. Then,
Bayesian optimization was innovatively utilized to opti-
mize the mechanical properties of the alloys. Substitut-
ing the GP function with regression models as surrogate
functions led to decreased design errors. The accuracy
of the alloy design before and after replacing GP as sur-
rogate function using the regression models were com-
pared through experimental validation. The SVR-UTS
model exhibits the highest accuracy at 99.5%, which
is much higher than the 92.8% of GP-UTS. The de-
sign accuracy for fracture elongation was improved by
40.9% compare with RFR-FE and GP-FE, which is the
most significant performance improvement observed in
this metric. 

(3) Utilizing the RBOALM, several novel high-performance
and low-cost Mg-Mn-based series wrought Mg alloys
were designed and prepared. After mechanical property
testing of the designed alloys, the Mg-2.1Zn-2.0Mn-
0.5Sn-0.1Ca alloy displayed an ultimate tensile strength
of 406 MPa, a yield tensile strength of 287 MPa, and
a fracture elongation of 23%. Furthermore, the Mg-
2.7Mn-0.5Al-0.1Ca alloy exhibited an ultimate tensile
strength of 211 MPa, coupled with a remarkable frac-
ture elongation of 41%. 
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